Google_Service_RecommendationsAI_Resource_ProjectsLocationsCatalogsEventStoresPlacements
extends Google_Service_Resource
in package
The "placements" collection of methods.
Typical usage is:
$recommendationengineService = new Google_Service_RecommendationsAI(...);
$placements = $recommendationengineService->placements;
Table of Contents
- $client : Google_Client
- $methods : array<string|int, mixed>
- $resourceName : string
- $rootUrl : string
- $serviceName : string
- $servicePath : string
- $stackParameters : mixed
- __construct() : mixed
- call() : Google_Http_Request|expectedClass
- TODO: This function needs simplifying.
- createRequestUri() : string
- Parse/expand request parameters and create a fully qualified request uri.
- predict() : Google_Service_RecommendationsAI_GoogleCloudRecommendationengineV1beta1PredictResponse
- Makes a recommendation prediction. If using API Key based authentication, the API Key must be registered using the PredictionApiKeyRegistry service. [Learn more](/recommendations-ai/docs/setting-up#register-key). (placements.predict)
- convertToArrayAndStripNulls() : mixed
Properties
$client
private
Google_Client
$client
$methods
private
array<string|int, mixed>
$methods
$resourceName
private
string
$resourceName
$rootUrl
private
string
$rootUrl
$serviceName
private
string
$serviceName
$servicePath
private
string
$servicePath
$stackParameters
private
mixed
$stackParameters
= array('alt' => array('type' => 'string', 'location' => 'query'), 'fields' => array('type' => 'string', 'location' => 'query'), 'trace' => array('type' => 'string', 'location' => 'query'), 'userIp' => array('type' => 'string', 'location' => 'query'), 'quotaUser' => array('type' => 'string', 'location' => 'query'), 'data' => array('type' => 'string', 'location' => 'body'), 'mimeType' => array('type' => 'string', 'location' => 'header'), 'uploadType' => array('type' => 'string', 'location' => 'query'), 'mediaUpload' => array('type' => 'complex', 'location' => 'query'), 'prettyPrint' => array('type' => 'string', 'location' => 'query'))
Methods
__construct()
public
__construct(mixed $service, mixed $serviceName, mixed $resourceName, mixed $resource) : mixed
Parameters
- $service : mixed
- $serviceName : mixed
- $resourceName : mixed
- $resource : mixed
Return values
mixed —call()
TODO: This function needs simplifying.
public
call( $name, $arguments[, $expectedClass = null ]) : Google_Http_Request|expectedClass
Parameters
Tags
Return values
Google_Http_Request|expectedClass —createRequestUri()
Parse/expand request parameters and create a fully qualified request uri.
public
createRequestUri(string $restPath, array<string|int, mixed> $params) : string
Parameters
- $restPath : string
- $params : array<string|int, mixed>
Tags
Return values
string —$requestUrl
predict()
Makes a recommendation prediction. If using API Key based authentication, the API Key must be registered using the PredictionApiKeyRegistry service. [Learn more](/recommendations-ai/docs/setting-up#register-key). (placements.predict)
public
predict(string $name, Google_Service_RecommendationsAI_GoogleCloudRecommendationengineV1beta1PredictRequest $postBody[, array<string|int, mixed> $optParams = array() ]) : Google_Service_RecommendationsAI_GoogleCloudRecommendationengineV1beta1PredictResponse
Parameters
- $name : string
-
Required. Full resource name of the format: {name=project s/locations/global/catalogs/default_catalog/eventStores/default_event_store/p lacements} The id of the recommendation engine placement. This id is used to identify the set of models that will be used to make the prediction. We currently support three placements with the following IDs by default: *
shopping_cart: Predicts items frequently bought together with one or more catalog items in the same shopping session. Commonly displayed afteradd-to- cartevents, on product detail pages, or on the shopping cart page. *home_page: Predicts the next product that a user will most likely engage with or purchase based on the shopping or viewing history of the specifieduserIdorvisitorId. For example - Recommendations for you. *product_detail: Predicts the next product that a user will most likely engage with or purchase. The prediction is based on the shopping or viewing history of the specifieduserIdorvisitorIdand its relevance to a specifiedCatalogItem. Typically used on product detail pages. For example- More items like this. *
recently_viewed_default: Returns up to 75 items recently viewed by the specifieduserIdorvisitorId, most recent ones first. Returns nothing if neither of them has viewed any items yet. For example - Recently viewed. The full list of available placements can be seen at https://console.cloud.google.com/recommendation/datafeeds/default_catalog/ dashboard
- More items like this. *
- $postBody : Google_Service_RecommendationsAI_GoogleCloudRecommendationengineV1beta1PredictRequest
- $optParams : array<string|int, mixed> = array()
-
Optional parameters.
Return values
Google_Service_RecommendationsAI_GoogleCloudRecommendationengineV1beta1PredictResponse —convertToArrayAndStripNulls()
protected
convertToArrayAndStripNulls(mixed $o) : mixed
Parameters
- $o : mixed