Documentation

Google_Service_CloudMachineLearning_Resource_Projects extends Google_Service_Resource
in package

The "projects" collection of methods.

Typical usage is: $mlService = new Google_Service_CloudMachineLearning(...); $projects = $mlService->projects;

Table of Contents

$client  : Google_Client
$methods  : array<string|int, mixed>
$resourceName  : string
$rootUrl  : string
$serviceName  : string
$servicePath  : string
$stackParameters  : mixed
__construct()  : mixed
call()  : Google_Http_Request|expectedClass
TODO: This function needs simplifying.
createRequestUri()  : string
Parse/expand request parameters and create a fully qualified request uri.
getConfig()  : Google_Service_CloudMachineLearning_GoogleCloudMlV1beta1GetConfigResponse
Get the service account information associated with your project. You need this information in order to grant the service account persmissions for the Google Cloud Storage location where you put your model training code for training the model with Google Cloud Machine Learning. (projects.getConfig)
predict()  : Google_Service_CloudMachineLearning_GoogleApiHttpBody
Performs prediction on the data in the request.
convertToArrayAndStripNulls()  : mixed

Properties

$methods

private array<string|int, mixed> $methods

$resourceName

private string $resourceName

$serviceName

private string $serviceName

$servicePath

private string $servicePath

$stackParameters

private mixed $stackParameters = array('alt' => array('type' => 'string', 'location' => 'query'), 'fields' => array('type' => 'string', 'location' => 'query'), 'trace' => array('type' => 'string', 'location' => 'query'), 'userIp' => array('type' => 'string', 'location' => 'query'), 'quotaUser' => array('type' => 'string', 'location' => 'query'), 'data' => array('type' => 'string', 'location' => 'body'), 'mimeType' => array('type' => 'string', 'location' => 'header'), 'uploadType' => array('type' => 'string', 'location' => 'query'), 'mediaUpload' => array('type' => 'complex', 'location' => 'query'), 'prettyPrint' => array('type' => 'string', 'location' => 'query'))

Methods

__construct()

public __construct(mixed $service, mixed $serviceName, mixed $resourceName, mixed $resource) : mixed
Parameters
$service : mixed
$serviceName : mixed
$resourceName : mixed
$resource : mixed
Return values
mixed

call()

TODO: This function needs simplifying.

public call( $name,  $arguments[,  $expectedClass = null ]) : Google_Http_Request|expectedClass
Parameters
$name :
$arguments :
$expectedClass : = null
  • optional, the expected class name
Tags
throws
Google_Exception
Return values
Google_Http_Request|expectedClass

createRequestUri()

Parse/expand request parameters and create a fully qualified request uri.

public createRequestUri(string $restPath, array<string|int, mixed> $params) : string
Parameters
$restPath : string
$params : array<string|int, mixed>
Tags
static
Return values
string

$requestUrl

getConfig()

Get the service account information associated with your project. You need this information in order to grant the service account persmissions for the Google Cloud Storage location where you put your model training code for training the model with Google Cloud Machine Learning. (projects.getConfig)

public getConfig(string $name[, array<string|int, mixed> $optParams = array() ]) : Google_Service_CloudMachineLearning_GoogleCloudMlV1beta1GetConfigResponse
Parameters
$name : string

Required. The project name.

Authorization: requires Viewer role on the specified project.

$optParams : array<string|int, mixed> = array()

Optional parameters.

Return values
Google_Service_CloudMachineLearning_GoogleCloudMlV1beta1GetConfigResponse

predict()

Performs prediction on the data in the request.

public predict(string $name, Google_Service_CloudMachineLearning_GoogleCloudMlV1beta1PredictRequest $postBody[, array<string|int, mixed> $optParams = array() ]) : Google_Service_CloudMachineLearning_GoogleApiHttpBody

Responses are very similar to requests. There are two top-level fields, each of which are JSON lists:

predictions The list of predictions, one per instance in the request. error An error message returned instead of a prediction list if any instance produced an error.

If the call is successful, the response body will contain one prediction entry per instance in the request body. If prediction fails for any instance, the response body will contain no predictions and will contian a single error entry instead.

Even though there is one prediction per instance, the format of a prediction is not directly related to the format of an instance. Predictions take whatever format is specified in the outputs collection defined in the model. The collection of predictions is returned in a JSON list. Each member of the list can be a simple value, a list, or a JSON object of any complexity. If your model has more than one output tensor, each prediction will be a JSON object containing a name/value pair for each output. The names identify the output aliases in the graph.

The following examples show some possible responses:

A simple set of predictions for three input instances, where each prediction is an integer value:

{"predictions": [5, 4, 3]}

A more complex set of predictions, each containing two named values that correspond to output tensors, named label and scores respectively. The value of label is the predicted category ("car" or "beach") and scores contains a list of probabilities for that instance across the possible categories.

{"predictions": [{"label": "beach", "scores": [0.1, 0.9]}, {"label": "car", "scores": [0.75, 0.25]}]}

A response when there is an error processing an input instance:

{"error": "Divide by zero"} (projects.predict)

Parameters
$name : string

Required. The resource name of a model or a version.

Authorization: requires Viewer role on the parent project.

$postBody : Google_Service_CloudMachineLearning_GoogleCloudMlV1beta1PredictRequest
$optParams : array<string|int, mixed> = array()

Optional parameters.

Return values
Google_Service_CloudMachineLearning_GoogleApiHttpBody

convertToArrayAndStripNulls()

protected convertToArrayAndStripNulls(mixed $o) : mixed
Parameters
$o : mixed
Return values
mixed

Search results